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Abstract

We present an initial investigation of the impact of channel interactions in dynamic,
stochastic models for target redundancy. Predictions are detailed for early and late
inhibitory and facilitatory interactions with respect to distributions of finishing times,
violations of the Miller and Grice inequalities, and a fine-grained measure of process
capacity.

Consider a task where either no target or a single target is presented, where
a negative response is given to the former and an affirmative response to the latter.
Compare that with a situation where two or more targets can be presented on affirma-
tive trials and the observer responds if any target is detected. Perceptual and sensory
scientists have long been interested in the degree to which performance is improved
in the multi-target (or redundant targets) case. The answer to this question bears
on issues such as architecture (e.g., serial vs parallel processing), stopping rule (e.g.,
self-terminating vs exhaustive processing), capacity, and independence. The evidence
is overwhelming that observers are faster when two or more targets are presented
than when a single target is presented. This suggests either parallel self-termination
or some type of convergence of information of several channels. If the improvement
is great enough, Miller (e.g., 1982) suggested that ordinary parallel processing will
not suffice to explain the results and something he referred to as “coactivation” must
occur.

Until Miller’s papers, the basis for rejecting ordinary parallel processing was the
comparison with predictions from a parallel model assuming (a) context independence
(or invariance), (b) stochastic independence and (c) self-termination. Context invari-
ance, overlooked as an important facet until the mid-1980s (e.g. Ashby & Townsend,
1986; Luce, 1986), assumes that the marginal response time distributions for the var-
ious channels) are unchanged from single to multi-target trials and implies unlimited
capacity. Unlimited capacity is defined as the invariance of the marginal processing
distribution associated with a single item as more and more items are added to the
processing load. Stochastic independence assumes that the probability that neither
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channel has finished its job by some time t, is just the product of the separate prob-
abilities. Finally self-termination allows multi-target trials to be faster simply due to
the statistical law that the minimum of a set of independent random variables will be
stochastically less than when fewer are observed. This latter result is referred to as
the “horse race” or “race” predictioﬁ/ and is also known as “probability summation.”
Probability summation under the preceding three assumptions takes the form

Piy(Tia <t) = Pip(Ty <)+ Poa(To < 8) — Po(Ty < t) - Pio(Ty < t)
= (M S+ P <t)- (T <t)-R(Ty <) (1)

where the (1,2) subscript denotes redundant target trials and the i(i = 1,2)
subscript implies a single target trial. Miller (e.g. 1982) noticed that equation [1] can
be made into a stronger test. First, observe that even if independence is wrong, it
still must be the case that, assuming context invariance and self-termination,

Pp(T<t) = A St)+ R <t)-Pa(Th <tNT; £1) (2)

Now, since Pp2(T1 < tN T, < t) always diminishes the overall quantity, it must be
the case that

B ) SRR SRy PP (3)

This inequality is known generally as Boole’s inequality and in psychology as the
“race model inequality” or “Miller’s inequality.” Miller pointed out that if the in-
equality is violated, some kind of rather extraordinary processing must be occurring,
which as noted, he referred to as coactivation. In a theory developed by Townsend
and Nozawa (1995), violation of Miller’s inequality is associated with super capacity.
Super capacity is defined as performance over and above that predicted by unlim-
ited capacity, independent parallel processing. Violation of Miller’s inequality implies
super capacity and super capacity over a substantial interval, implies a violation of
Miller’s inequality (Townsend & Nozawa, 1997). There is another inequality which
tests the lower limits of capacity, rather than the upper limits. Grice and colleagues
(Grice, Canham & Boroughs, 1984) were apparently the first to suggest its use (ac-
tually in a study of distractor effects), so we have referred to it as Grice’s inequality
(Townsend & Nozawa, 1995), and its expression is

Plz(T S t) 2 min[P1(T1 S t),Pz(Tz S t)] (4)

Intuitively, it says that ordinary parallel processing should not be slower than the
fastest single channel performance. As one might expect, it turns out to be indicative
of highly limited capacity within our formal theory.
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The differential equations represent rate of activation in the two channels, re-
spectively. Note that the zs represent the state activations and the ys represent the
outputs. The a parameter indicates the degree of feedback within the respective chan-
nels whereas b represents the degree of “cross-talk” across channels (we refer to this
as early crosstalk); ¢ and d are the parameters representing output weighting that
is within, or across, channels respec"gvely (late crosstalk). We have chosen to start
with the case of symmetry in that the within-channel and cross-channel feedback and
output weightings are identical, and this can obviously be easily generalized. In each
case, if the cross-talk parameter is positive, this implies that the channels increase
each other’s activation, that is, facilitation is occurring. If the cross-talk parameters
are negative than inhibition is in force.

In order to permit a stochastic depiction of activation, we induce noise in the
form of added Gaussian noise, before integration of activation occurs. It is important
to note though, that this Gaussian noise is a true stochastic process, not just an
addition of a Gaussian random variable. Finally, we impose activation thresholds on
each channel.

It is obviously the early or late cross-talk that can lead to inter-channel correla-
tions. In order to focus on the early vs late channel interactions, we alternatively
let b = 0, that is the early cross-talk is eliminated but not the late, or d = 0, that
is the late channel interaction is eliminated, but not the early. The system that in-
cludes only late interaction will be referred to as System I and that with only early
interaction will be referred to as System II.

Note that because only one cross-talk parameter, b or d, is employed in early or
late processing, only facilitation or inhibition is occurring at each level. Furthermore,
because we isolate the types of early vs. late interaction, we can have no trade-off
of facilitation vs inhibition. Another natural constraint that we impose is that the
systems are always stable. This simply means that the system can never run off
toward infinity. Furthermore, we assumed that the internal weight in each channel’s
output, ¢ > 0. In the event of facilitatory early interaction, b > 0, the effect of a < 0
must be bigger than the combined effect of & > 0. The parameter values were selected
to obey these conditions.

Predictions of our systems were obtained by simulation, and those predictions
were compared on F'(t) (the cdf of finishing times), Miller’s and Grice’s inequalities,
and the finer-grained capacity coeficient C'(¢). C(¢) > 1 indicates super capacity,
C(t) < 1 indicates limited capacity, and C(t) = 1 indicates unlimited capacity. In
the following, we will refer to the prediction garnered by taking the single target
performance and assuming independent, unlimited capacity, self-terminating (i.e.,

stopping when the first completion occurs) processing as the “race prediction”.

Results

Consider first System I when the crosstalk is inhibitory. In this case, the inhibitory
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effects are seen to actually slow down the redundant trial performance to such an ex-
tent that performance is worse than that predicted by the single F(¢)s. Miller’s
inequality is satisfied, Grice’s inequality is violated, and C(t) < .5, indicating incred-
ibly low capacity. Now consider System I when the crosstalk is facilitatory. Contrary
to the preceding case, here the redundant target performance greatly exceeds that
predicted by the race model. Now the Grice bound is never crossed, Miller’s bound
is violated, and C(t) indicates extreme super capacity.

For System II when the crosstalk is inhibitory, performance is worse than the race
prediction, but does not fall below the single target prediction. Miller’s inequality
is satisfied, but performance sits right atop the Grice bound. The interpretation
of this result is that capacity is fixed, an interpretation that is reinforced by C(t),
which hovers closely around C(t) = .5. For this system when crosstalk is facilitatory,
performance is faster than that found with the race model, Grice’s inequality is never
violated, Miller’s inequality is violated, and C(t) is much greater than 1, indicating
super capacity.

Discussion and conclusion

The upshot of our simulations with parallel linear systems with decision threshold
and intruding Gaussian noise is as follows: Inhibitory influences, whether created by
cross-feedback or late effects on output, can and do cause sufficient harm to processing
speed that the mild helpful effects on the dependence term (i.e., Pio(T1 < tN T, < 1))
are more than overwhelmed by the imposed massive inhibition. The latter effect
can be viewed as occurring in the marginal distribution functions—that is, context
invariance is not obeyed and in fact outweighs the dependence consequence itself.

The same can be said of facilitatory cross-talk in reverse: The slight hurt to speed
as captured by the fact that Pyo(Ty <t N Ty < t)is less than Py (Ty < t) - Po(T2 < 1)
in the cumulative probability of stopping by a certain time in the redundant targets
formula, is dominated by the positive effect on the marginal distribution functions,
Thus, again context invariance fails in a way that makes the performance move in
the opposite direction to the tendency caused by the dependency itself.

It is obvious that different parameter values could change the degree of effect of
positive or negative interactions. The present investigation simply proves that such
interactions can affect performance in a powerful fashion, violating context invari-
ance in the process. What has not been shown presently, is what the lower and
upper bounds on performance are, if any, created by positive and negative interac:
tions. Nevertheless, our suspicions are that the assumption of stability creates a kind
of asymmetry in the following sense. Because the system can stay stable even with
tremendous negative cross-talk, it seems likely that performance can be made very
slow indeed. Only by restraining the interactions to realistic levels (e.g., b and d
not being larger in the negative direction than is a) will any bounds on change from
single to double target conditions obtain. On the other hand, since positive lateral
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interactions “plus” the positive effect of ¢, must always be outweighed by the param-
eter a to ensure stability, there may be a more profound limit on how much positive
interactions can help.
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